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Summary.

The nonstandard eigenvalue problem is defined and shown
to originate in microwave field problems. A unified
variational principle is introduced and applied to some
simple, yet nontrivial, problems to demonstrate that a
nonstandard formulation may lead to a simpler solution
of the same problem than a standard one.

The eigenvalue problem.

In terms of linear operators, the eigenvalue problem
can be expressed in the form
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The problem is of the standard form for L(A)=L -AMg,
B(x)=BO, where Lo’Mo’B do not depend on the parameter
A. For~any other depenaence, (1),(2) is termed nonstan-
dard. eigenvalue problem. Here, the operator L may be a
differential or integral operator and B is an additional
operator corresponding to, e.g., boundary or interface
conditions of the field function f. For integral opera-
tors L the condition (2) may be nonexistant.
The nature of the parameter A is Timited in no way, it
may be any physical or geometrical parameter involved
in the problem. We are interested in those values of A,
for which there exist other solutions of (1),(2) than
f=0, called eigenvalues. It is seen that the same prob-
lem can be conceived as an eigenvalue problem in as
many different ways as there are parameters. We may
wish to consider a nonstandard formulation of the prob-
Tem e.g. for one of the following reasons:
-the problem cannot be formulated in a standard
form
-the problem is easier to solve in a nonstandard
form
-the nonstandard eigenvalue is the interesting
parameter of the problem

The variational.method.

A variational principle effective for eigenvalue prob-
lems can be formulated in abstract form in terms of two
inner products (-,:) , (-,.)b :

F(h:f) = (Ff,LOO)F) + (Cf,B(x)f)b =0 . (3)

Here, C is a linear operator not dependent on X, which
can also be hidden in the definition of (-,-), , but
generally present if the definitions of the two inner
products are the same in the respective domains of the
operators L and B. In all examples here, C equals 1.

It can be shown that (3) possesses roots A that are
stationary for small variations of the field function f
about its correct value, i.e. solution of (1),(2), [11.
Thus, if X can be solved from (3) in explicit form,
what results is a stationary functional for X. A neces-
sary condition, however, is that the operator triple
L,B,C is self adjoint with respect to the inner products
defined, i.e., we have
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(g.LF) + (Cg,BF), = (Lg,F) + (Ba,CF)y (4)

for all f,g and the parameter A. Non-selfadjoint prob-
Tems can be written in a selfadjoint form [2].
Because the parameter \ was restricted in no way, we
may identify A with any parameter of the problem and
apply (3). An explicit stationary functional is obtained
if (3) is an algebraic equation for X of the first or
the second degree, but it may even be transcendental
and yet possess an explicit solution.The following pro-
cedure may be helpful in applying the present method:
1.Formulate the problem, identify the operators
L and B
2.Define the inner products and the operator C
such that the condition (4) is satisfied
3.Apply (3) for the interesting parameter or,
if it cannot be solved in explicit form, for
another parameter of the problem for which (3)
is solvable. In negative case, also F(X;f) is
a stationary functional.
4.For fixed values of all parameters in the func-
tional find the stationary value of the func-
tional by inserting suitable test functions
for f.

Examples.

The previous theory will now be elucidated with a few
simple, yet nontrivial, examples. A more complete ana-
1ysis of these and other examples can be found in [1].

Cutoff of a waveguide with reactance boundary.
The cutoff problem of a wave-
guide with a reactance bound-
ary can be formulated in stan-
dard form writing Maxwell's
equations for (1), where f
represents the pair of field
vectors E,H and X is the cut-
off frequency w. This formu-
Tation is very inconvenient

to apply, because we have to
find reasonable test functions
for a pair of field vectors.
Eliminating H, we are left
with an eigenvalue problem for the electric field E,
which, however, is no more of a standard form in the
parameter w, because L(w) is a quadratic function and
B(w) is a linear function. A functional can be construc-
ted from (3) in explicit form for A=w.

Applying axial components of field vectors (or Hertzian
potentials), a simpler formulation is obtained for the
problem in terms of a scalar function E or H_ corre-
sponding to the TM and TE fields of the cutoff problem.
For example, for the TE field we have

L(K)F = (V2+kP)H, = 0 on S (5)
on C.

B(K)f = m-7H, - kpH, = 0

Figure 1. Waveguide
with a reactance
boundary.
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Here, we denote by p the normalized surface reactance
X./n. The problem (5),(6) is clearly of the nonstandard
f8rm in the parameter k. Defining inner products as
integrals over S and C, respectively, we have the oper-
ator C=1 and since (3) now is quadratic in k=), we can
solve it for the following functionals:

2 2.0 12 2
= of gc s quﬁf dc } ¢ J(vf)7ds 7)

2/£2ds 2[£°ds [£%ds

The two functionals are both stationary for the correct
field f=HZ. It is easy to see that the lower sign func-
tional corresponds to negative cutoff frequencies and
its values are obtained from the upper sign functional
by reversing the sign of p and the functional. So, we
may limit to one functional only.

(7) is much easier to apply than the corresponding
standard functional for E,H fields, and engineering ac-
curacy is easily obtained with a programmable calculator
applying simple test functions. As a test, for a circu-
lar cylindrical waveguide with the radius a, applying
the linear test function f(p)=p+ca, where p is the ra-
dial distance and o a free parameter, we obtain from
(7) the stationary value with respect to variations in
o an accuracy better than 2.4% in the range - « < p<]
for the TEO] cutoff mode.

Other choices of the eigenvalue parameter. Since we are
free to choose the parameter for the eigenvalue of our
problem, we might try other possibilities for A. In the
formulation of the problem (5),(6) there is another
parameter, p=X_/n, which is a nonstandard eigenvalue by
the definition? In this case, the resulting functional
is simpler because (3) is now a linear equation for A=p
The solution is

N5

245 - K2[2ds
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, (8)

and it gives us the value p as the stationary value for
the correct field f=HZ.

The eigenvalue problef can be stated: Determine the pos-
sible boundary reactance values for which the cutoff
wavenumer takes on the value k. Because of the simple
functional (8), analytic approximations for the relation
p(k) are possible. For the circular guide just mention-
ed, with the same test function, we have the result
p(k)=-ka((ka)?-18)/6((ka)2-6), which is extremely tedi-
ous to deduce from the functional (7).

There exist still more parameters in this simple prob-
lem, involved in the geometry of the wavegquide. For
example, for the circular waveguide we have the obvious
parameter A=a. The equation (3) in this case, however,
is too complicated to be solved for a in explicit form,
whence we have to be satisfied either with (7) or (8).
Which one of the two we choose depends on our problem.
If we wish to know the functional relation between k
and p, the functional (8) is more attractive because of
its superior simplicity. Also, if we wish to know the

p value giving us a certain k value, (8) is to be pre-
ferred. But if the problem is to find the k value for

a given p, we should apply (7) because it gives us the
result directly, whereas (8) has to be applied repeat-
edly.

Waveguide with azimuthally magnetized ferrite.

A circular waveguide filTed with ferrite material magne-
tized azimuthally to remanence with the aid of an axial
current pulse has proved useful for microwave phase
shifting devices [3],[4]. The operating mode is TE0

and the propagation factor g8 depends on the direct1$n
of magnetization, i.e., sign of the parameter p=yM, /w,
where vy is the gyromagnetic ratio, and M, the magngti—
zation in the azimuthal direction. ¢
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The pertinent equations for the axial magnetic field
are in this case

Hom) "+ (kP-pP-p% By - 0 (9)
Hy(0) =0 , Hi(a) =0 (10)

The equations (9),(10) can
be solved exactly in terms
of Kummer and Tricomi hyper-
geometric functions of pure
imaginary argument and

zeros for these functions
have been tabulated [4].

The probiem may also be
attacked with variational
methods. (9),(10) is clearly
of the nonstandard form in
all parameters k,p,B,a. The equation (3) is algebraic
and quadratic in the two parameters p and B, cubic in
the parameter k (note the dependence of p on k) and
nonalgebraic in the geometrical parameter a. Hence, it
is most advantageous to solve (3) either for p or B.
The functional for A=8>0 reads

Figure 2. The ferrite-
filled circular wave—
gutde.

2 2,42 2
SR JLa I {Eﬁ?@] b 2ot [ odo
2[f"pdo (2ffodo) [t 0do

and that for p is obtained through the transformation
p~B/k.

For example, for ka=16 and p=+0.4 we have the station-
ary values B/k = 0.83 and 0.92, respectively, for the
simplest polynomial test function satisfying the bound-
ary conditions (10) and containing one free parameter:
f(p)= p®-3p%a+a. The corresponding values from [4] are
0.86 and 0.91. The error is smaller for smaller |p].

Dielectrically loaded resonator. i/,
As a final example we study a C
cavity of general form with a AT
dielectric insert. The problem 034 a
is relevant for microwave diag- L lE
nostics, i.e., in trying to b &)

find out material parameters in
terms of resonance frequency yi
and Q measurements. The common
way of formulating the problem
is such that the resonance fre-
quency, which is known, is trea-
ted as an unknown and a functional for it is construct-
ed,[5],[6]. However, since ¢_ is now the interesting
parameter, we should rather freat it as an eigenvalue.
A functional for A=er can be written in the form [1]

J'(VXE)2

ok ]

Figure 3. The reso—
nator with an insert
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(12)

Here, the integrals in the numerator are over the whole
resonator volume V, whereas that in the denumerator
only extends over the volume of the dielectric insert

V..

Tﬁe application of (12) is simpler than that for the
resonance frequency, because for a measured value of
the frequency we directly have the dielectric constant
as the stationary value, whereas the other functional
must be used for many times. (12) also works for lossy
dielectrics if k is taken complex. Moreover, (12) is
valid as well for frequency dependent media and the
frequency dependence of ¢ is obtained if the cavity is
deformed so that the resonant frequency is changed.
The functional for the resonance frequency is strictly
not stationary for frequency-dependent inserts. Only
for slight dependence of eon w is it applicable.



In fact, for frequency-dependent media with known de-
pendence, the equation (3) for A=w is more complicated
to solve as that for nondispersive media.

As a test of the functional (12) we apply it for the
rectangular resonator shown in Fig.3 for the basic TE 01
mode. The result can be solved exactly from a transceA—
dental equation. For the test function with sine depend-
ence on the z coordinate and x{a-x)(1+ax} dependence on
the x coordinate, we obtain the result depicted in

Fig.4 for low values of €
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Figure 4. Relation between the dieletric constant €
the normalized resonance frequency ka and the thiclkE
ness d of a dielectrically loaded rectangular resona-
tor. Solid line: exact, dashed line: approximate.

E]

It is seen that this simple test function is satisfac-
tory for low e values only.

In this prob]eﬁ it is possible to solve (3) also for
the geometrical parameter d [1].

Conclusion.

The concept of nonstandard eigenvalue problem was de-
fined and a variational method was introduced in a very
general form. Several simple examples were considered
in terms of the present method and engineering accuracy
was observed for very simple test functions.
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